70 research outputs found

    Effective modelling for predictive analytics in data science

    Get PDF
    Predictive analytics includes many statistical and other empirical methods that create various data predictions as well as different methods for assessing predictive power. Predictive analytics not only helps in creating practically useful models but also plays an important role in building new theory for further study and research. Today, the use of available data to extract inferences and predictions by using predictive analytics has grown in the industry from being a small department in large companies to being an active component in most mid to large sized organizations. This paper addresses to reduce a particularly large gap of, the nearabsence of empirical or factual predictive analytics in the mainstream research going on in this field by analyzing the issues faced in predictive modelling by the empirical determination of data with its experimental facts for latency pattern.Keywords: Predictive Analytics, Big Data, Business Intelligence, Project Planning

    Instability of the heliopause driven by charge exchange interactions

    Get PDF
    The stability of the heliopause that separates the tenuous hot magnetized heliosheath plasma from the dense cool local interstellar magnetized plasma is examined using a fully general model that includes all the essential physical processes. Charge exchange coupling between plasma protons and primary interstellar neutral atoms provides an effective gravity that drives Rayleigh-Taylor (RT)-like instabilities. The velocity difference or shear between the heliosheath and interstellar flows, when coupled to energetic neutral atoms (ENAs), drives a Kelvin-Helmholtz (KH)-like instability on the heliopause. The shoulder region of the heliopause is unstable to a new instability that has characteristics of a mixed RT-KH-like mode. The instabilities are not stabilized by typical values of the magnetic fields in the inner and outer heliosheath (OHS). ENAs play an essential role in driving the KH-like instability, which is fully stabilized in their absence by magnetic fields. The nonlinear phase of these instabilities is briefly discussed. We also discuss the possibility that RT-like or mixed KH-RT-like instabilities drag outer heliosheath/very local interstellar medium (OHS/VLISM) magnetic field lines into the inner heliosheath (IHS) with the VLISM flow, and the possibility that IHS and VLISM magnetic field lines experience reconnection. Such reconnection may (1) greatly enhance the mixing of plasmas across the heliopause and (2) provide open magnetic field lines that allow easy ingress of galactic cosmic rays into the heliosphere and corresponding easy loss of anomalous cosmic rays from the heliosphere

    Sequential extraction of proanthocyanidin fractions from Ficus species and their effects on rumen enzyme activities in vitro

    Get PDF
    Three proanthocyanidin fractions per species were sequentially extracted by 50% (v/v) methanol–water, 70% (v/v) acetone–water, and distilled water from leaves of Ficus racemosa (fractions FR) and F. religiosa (fractions FRL) to yield fractions FR-50, FR-70, FR-DW, FRL-50, FRL-70, and FRL-DW. Fractions were examined for their molecular structure, effect on ruminal enzyme activities, and principal leaf protein (Rubisco) solubilization in vitro. All fractions except FRL-70 contained flavonoids including (+) catechin, (−) epicatechin, (+) gallocatechin, (−) epigallocatechin, and their -4-phloroglucinol adducts. The fractions FRL-50 and FRL-DW significantly (p < 0.05) inhibited the activity of ruminal glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. All fractions inhibited glutamate dehydrogenase activity (p < 0.05) with increasing concentration, while protease activity decreased 15–18% with increasing concentrations. Fractions FRL-50 and FRL-DW completely inhibited the activity of cellulase enzymes. Solubilization of Rubisco was higher in F. religiosa (22.36 ± 1.24%) and F. racemosa (17.26 ± 0.61%) than that of wheat straw (WS) (8.95 ± 0.95%) and berseem hay (BH) (3.04 ± 0.08%). A significant (p < 0.05) increase in protein solubilization was observed when WS and BH were supplemented with FR and FRL leaves at different proportions. The efficiency of microbial protein was significantly (p < 0.05) greater in diets consisting of WS and BH with supplementation of F. racemosa leaves in comparison to those supplemented with F. religiosa leaves. The overall conclusion is that the fractions extracted from F. religiosa showed greater inhibitory effects on rumen enzymes and recorded higher protein solubilization in comparison to the F. racemosa. Thus, PAs from F. religiosa are potential candidates to manipulate rumen enzymes activities for efficient utilization of protein and fiber in ruminants

    Proanthocyanidins modulate rumen enzyme activities and protein utilization In Vitro

    Get PDF
    This study investigated the principal leaf protein (rubisco) solubilization and in vitro ruminal enzyme activity in relation to the molecular structure of proanthocyanidins extracted from leaves of Anogeissus pendula and Eugenia jambolana. Six proanthocyanidin fractions were extracted by 50% (v/v) methanol–water followed by 70% (v/v) acetone–water and then distilled water from leaves of A. pendula (AP) and E. jambolana (EJ) to yield EJ–70, EJ–50, EJ–DW, AP–70, AP–50 and AP–DW. Fractions were examined for their molecular structure and their effects on sheep ruminal enzymes and solubilization of rubisco in vitro. All fractions significantly (p < 0.05) inhibited the activity of ruminal glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. The fractions AP–50 and EJ–50 significantly inhibited the activity of the R-cellulase enzyme. Most of the fractions inhibited R-glutamate dehydrogenase activity (p < 0.05) by increasing its concentration, while protease activity decreased by up to 58% with increasing incubation time and concentration. The solubilization of rubisco was observed to be comparatively higher in A. pendula (16.60 ± 1.97%) and E. jambolana (15.03 ± 1.06%) than that of wheat straw (8.95 ± 0.95%) and berseem hay (3.04 ± 0.08%). A significant (p < 0.05) increase in protein solubilization was observed when wheat straw and berseem hay were supplemented with A. pendula and E. jambolana leaves at different proportions. The efficiency of microbial protein was significantly (p < 0.05) greater with the supplementation of leaves of A. pendula in comparison to E. jambolana. The overall conclusion is that the proanthocyanidins obtained from E. jambolana exhibited greater inhibitory activities on rumen enzymes, whereas A. pendula recorded higher protein solubilization. Thus, PAs from A. pendula and E. jambolana appear to have the potential to manipulate rumen enzyme activities for efficient utilization of protein and fiber in ruminants

    Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport

    Get PDF
    Paddy is commonly grown under flooded or submerged condition in which substantial amount of water is lost by different processes. Puddling is traditionally done to reduce water loss from lowland rice fields. Since the very step of puddling, rice root zone undergoes structural changes leading to the formation of a layered profile having a hydraulically less-conductive plow sole below the root zone. However, studies have shown that soil cracking and the presence of preferential flow paths in puddle fields defeat this purpose. Description of soil water regime in such a dynamic soil requires an in situ measurement method for soil hydraulic properties. A field experiment was conducted in twelve 30 m2 plots during the rainy seasons (June to October) of 2004 and 2005 to evaluate a suitable method for estimating soil hydraulic properties of lowland paddy soil. Results showed that piezometric (pressure) heads installed in different soil layers responded to the drying and wetting cycles typically followed in transplanted rice and are observed as a part of monsoon climate in eastern India. The Marquardt-Levenberg algorithm built in the HYDRUS-1D simulation environment was used to inversely estimate soil hydraulic parameters. Estimated parameters revealed larger hydraulic conductivity for the compacted plow sole than those published in literature, which may have resulted from alternate wetting and drying typically observed under monsoon climate and earthworm burrows observed in our experimental field. Results from simulation studies suggest that both the single- and dual-porosity models could simulate water flow considerably well in lowland paddy field although the latter described pressure head time series data slightly better in about 50% of simulations. Similar performance of the single- vs. dual-porosity model may have resulted from estimating a seasonally mean soil hydraulic properties which include the effect of both preferential flow and matrix flow as the specific soil and boundary conditions prevailed. While water may have preferentially transported through the macropores during the wetting cycles in a near-saturated soil, it would have dominantly moved through soil matrix during the drying cycles. This study shows that simple piezometers may be combined with a simulation model to estimate hydraulic properties of different soil layers in a lowland paddy field

    Salmeterol: a long acting bronchodilator.

    No full text
    • 

    corecore